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Introduction

A large number of QSAR methods [1 , 2 , 3 , 4 , 5 , 6 ] are
available now for use by medicinal chemists. Many of these
methods, however, use only restricted, one-sided structural
information that does not adequately describe all the rel-
evant properties of the analyzed molecules. For example, in
simple models only specific structural fragments (descrip-
tors) of molecules (e.g., the Free-Wilson method [2]) or
physicochemical parameters of the molecular fragments such
as lipophilicity, charges, etc. (see for example the Hansch
approach [1]) are analyzed. In other approaches both sets of

these parameters together with various topological indices
of the molecules are considered.[7 , 8 ] The Hopfinger model
[9 ] considers only parameters that describe the shape of a
molecule, while the Cramer principal component based ap-
proach utilizes only physicochemical characteristics (B, C,
D, E, F-parameters).[10 ] These and many other well-known
QSAR models used by medicinal chemists do not, as a rule,
consider the stereochemical peculiarities of molecules.

Two more recent and apparently more complex ap-
proaches such as CoMFA [11 ] and HASL [12 , 13 ] utilize a
more elaborate description of the molecules and consider
parameters reflecting peculiarities of the intermolecular in-
teraction of the compounds analyzed and their spatial struc-
ture. The approach proposed here uses similar parameters
as applied in these powerful methods. However, in addition
the molecule properties are described with a variety of com-
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plementary parameters. The whole set of parameters gener-
ated ranges from the most simple, such as presence or ab-
sence of particular atoms in the molecular structure, to more
sophisticated parameters that could be used to take into ac-
count stereochemistry of the analyzed molecule and its inter-
action with the environment. We show that analysis of a large
number of parameters generated by our model could provide
a pertinent description of the molecules and can be very im-
portant for successful QSAR modeling. In order to analyze
the generated parameters, which include up to tens of thou-
sands of descriptors per molecule, we apply methods [14 ,
15 , 16 ] developed for the processing of large arrays of data
without essential loss of reliability of the calculated model.

Representation of a molecule

The description of the compounds includes several steps. In
the first, the spatial structure of the analyzed molecules is
obtained from experimental data (i.e., X-ray analysis) or from
molecular or quantum mechanical calculations. In the case
of flexible molecules, it is necessary to select one of the sta-
ble conformations. This may be achieved using some confor-
mational search procedure or making use of some comple-
mentary information regarding the biologically active con-
formation of the molecule. The conformation of each mol-
ecule is placed into a lattice of cubic cells.[17 ] The size of a
cell, h=2Å (it can be varied), approximately corresponds to
the average van der Waals radius of an organogenic atom.
The invariant disposition of the molecule in the lattice is
achieved by superposition of the center of mass of the mol-
ecules with the origin of the coordinates. In addition the prin-
cipal axes of inertia of the molecule are also superimposed
with the coordinate axes of the lattice. If the analyzed struc-
tures contain a large common structural fragment, their align-
ment is carried out mainly according to this fragment.

A broken spiral curve (SC) is constructed within the lat-
tice.[18 ] This curve passes over the center of all lattice cells
(both occupied and vacant) and it represents a complex line
consisting of coaxial fragments of spirals, embedded one into
another (Figure 1).[18] Two types of SC, one that turns en-
tirely to the right and one that turns to the left, i.e. left and
right SC are usually considered in the analysis.

The SCs are used to calculate molecular codes (MC) of
the analyzed structures. This code consists of a sequence of

real values bi representing the atomic characteristics (for ex-
ample, atomic number, lipophilicity, atomic refraction, etc.)
and integer values ai corresponding to the distance between
atoms i and i+1 measured as the number of empty cells along
the SC. This code includes all information about shape and
stereochemistry of the analyzed molecule in a compressed
form.[18] Two types of MC, i.e. left (LMC) and right (RMC)
molecular code corresponding to the two types of broken lines,
are calculated for each molecule. The spatial structure of a
molecule is easily restored from its MCs and each molecule
is characterized by its unique MC. Sensitivity of the MC for
description of the spatial structure of the molecule depends
on the size h of the lattice cell.  The ”conformational sensi-
tivity” of the models is decreased with an increase of the cell
size h. For example, the rotation of the C-C bond in H3C-
CH2 OH changes the MC only for each 15º and 30º using the
size of the lattice cell h=1Å and h=2Å respectively. The ability
to vary the length of the cell in the lattice makes it possible
to describe the molecular structures with varying degrees of
precision. A model with lower precision can be especially
useful in the analysis of flexible molecules, especially if there
are difficulties in the determination of the biologically active
conformation of the molecules. The use of large lattice cells
also allows the consideration in the analysis of a set of con-
formations.

MC provides the possibility to estimate a structural simi-
larity/dissimilarity of different compounds. Let us consider
RMC of two arbitrary molecules M1 and M2:
RMC (M1) = a1 b1 a2 b2 a3 b3 … ai bi …an1 bn1 (1)
RMC (M2) = a’1 b’1 a’2 b’2 a’3 b’3 … a’i b’i … a’n2 b’n2;

where n1 ≤ n2 .
A measure of structural dissimilarity (SD) can be calcu-

lated using Euclidean distance in the space of parameters (ai,
a’i) and (bi, b’i)
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where ai=bi=0 for i>n1. The distances Ra(M1,M2) and
Rb(M1,M2) estimate the geometrical structural dissimilarity

Table 1 Distribution of atoms (fragments) by cells

Number of cell 1 2 3 4 … 38 … 45 46 47 48 … 57

Molecule a C C CH CH H F CH CH
Molecule b C C CH CH H CH H CH CH H

Molecular codes are:
a: 0.12.1.12.1.13.1.13.34.1.7.19.2.13.1.13.0. 0. 0.0.
b: 0.12.1.12.1.13.1.13.34.1.7.13.1. 1. 1.13.1.13.9.1.
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and the structural dissimilarity of the atom characteristics of
the molecules, respectively. The comparison of RMC and
LMC is used to estimate the chirality level of molecules [18]
that is introduced as χ = R (RMC, LMC), where RMC and
LMC are the left and the right molecular code of the analyzed
molecule.

Let us disregard the nature of the values ai and bi and
formally consider all terms from Eq. (1) as an array. This
makes it possible to calculate a structural similarity (SS) and
dissimilarity (DS) of molecules using the coefficient of cor-
relation, R [19 ], and Camber distance [20 ]
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The molecules fluorobenzene (a) and toluene (b) were used
for illustration of the procedure of a construction of a mo-
lecular code (Figure 2). The distribution of atoms (fragments)
by cells is shown in Table 1.

The first digit ”0” in molecular codes means the spiral
begins in the filled cell. The underlined zeroes were added to
have identical lengths of molecular codes for both molecules
in SS/DS calculations.

Structural similarity/dissimilarity (SS/DS):
Ra (a, b) = 9,110 Rb (a, b) =18,708
R (a, b) = 0,850 D (a, b) = 5,378

The parameters Ra, Rb, R, D reflect SS/DS and can be used in
QSAR studies. These parameters reflect the widely held prin-
ciple, that substances with similar structures also have simi-
lar properties. RMC is usually used to calculate the struc-
tural similarity of compounds.

Figure 1 The broken spiral curve in the spatial lattice
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(a) (b)

Figure 2 The lattice models of molecules of  fluobenzene (a) and toluene (b)

Structural parameters of molecules

We propose to classify the structural parameters considered
in this study as follows:

1. Integral parameters describing properties of the whole
molecular structure;

2. Local parameters describing the separate fragments
of the molecule;

3. Field parameters describing the influence of the mol-
ecule on the enclosing space.

Integral parameter

Integral parameters include characteristics of inertia ellip-
soid, dipole moment, molecular refraction, lipophilicity,
parachor, and average polarizability. Several parameters were
originated from the MC. They include the length of the left

and the right codes ∑
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and the parameters of structural similarity of molecules Ra,
Rb, R, D. If available, some information about the environ-
ment and mutual disposition of the pharmacophores, can be
also included into the analysis.[21 ]

A number of parameters calculated by Fourier transform
of atom property distributions along the SC were also in-
cluded in this group of parameters. The Fourier transform
describes the integral parameters of the analyzed structure.

The high-frequency harmonics characterize small fragments
while the low-frequency harmonics correspond to the global
molecule properties. The Fourier transform of a discrete func-
tion of parameters P(i):
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where m is the number of harmonic, qm is the amplitude, ψm
is the phase angle, N is the total number of cells, M= int(N-
1)/2 is the total number of harmonics, cm  and dm  is the coef-

ficients of transform,  qn/2 =0 for odd N, dmcmqm
22 +=  ,

øm=arctan(cm/dm) is the phase angle. The values of the ampli-
tudes qm were used as the parameters for a QSAR study.

Local parameters

Local parameters were used to describe the properties of cells
occupied by atoms. They include parameters corresponding
to the presence or absence of some atoms in the cell (i.e.,
presence of C or O), average lipophilicity, refraction,
polarizability, electrostatic charge and electronegativity of
fragments and atoms. All charge characteristics were calcu-
lated using the method of smoothing of electronegativity
according to Jolly-Perry.[22 , 23 ]

Field parameters

Field parameters described characteristics of vacant cells.
They include

1) An electrostatic potential in the vacant cell

EP
q

r
i

j

ijj

n

= ∑
1

, (7)

where i is the number of the cell, j is the number of the atom,
qj is the charge of the atom j,[22, 23], r ij is the distance be-
tween the atom j and the cell i.

2) A lipophilicity potential [24 ] in the vacant cell
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where i is the number of the cell, j is the number of the atom,
fj is the lipophilicity of the atom (group), rij is the distance
between the atom j and the cell i.

3) A probability of an occupancy of a vacant cell by dif-
ferent atoms i,k ( ”probe-atoms”) or probability to be empty:
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where Ei or Ek is the energy of interaction between the mol-
ecule and the corresponding probe-atom i or k in the analyzed
cell. A set of atoms Csp

3, Nsp
3, Osp

3, Csp
2, Nsp

2, Osp
2 Cl, H  and

absence of any atom (”vacuum”) were used as probes. Let us
note that CoMFA [11] uses energy attributes to characterize
the analyzed cells. In the method described here the prob-
abilities of occupancy of a cell represents a different approach
for the description of interactions between the molecule and
the biological target. It might be argued that a probability

based scheme offers improvements over an energy based
method.

4) A possibility of a presence of a donor (or an acceptor)
of a hydrogen bond in the cell. It is assumed that such a hy-
drogen bond can be formed between this donor or this accep-
tor and the analyzed molecule.

All structural parameters, i.e. integral, local and field pa-
rameters contain an exhaustive description of the molecular
structure. The thousands of parameters (their exact number
depends on the parameters of the lattice) are generated within
the proposed approach for each analyzed molecule. This re-
duces the probability of missing the most significant param-
eters required to correlate activity of the analyzed molecules
with their structure. The analysis of such large numbers of
parameters requires an application of specialized methods,
such as the trend-vector approach described in the next para-
graph.

 Due to the large set of structural parameters, in most cases,
a chance to construct a few approximately equivalent models
of ”structure – property” appears. We suppose, that this fact
results to the best interpretability of such kind dependences.

Data analysis

The trend-vector (T-vector) procedure [15, 16] does not
concretize the form of a corresponding dependence and can
use a great number of structural parameters. However, this
method can predict properties of analyzed molecules only in
a rank scale, i.e. it forecasts that the molecule is, let us say,
more active than molecule A and less than B. This is not a
crucial limitation for QSAR tasks.

The T-vector method is based on the fundamental idea of
the pattern recognition theory. It divides n analyzed objects
into two classes relative to the average value of their activity
( A ). The data samples i with positive Ai- A >0 form one class
and the data samples with negative values Ai- A <0 form an-
other class. It is possible to consider Ai-A  as charges. Hence,
similarly to the dipole moment vector, the T-vector charac-
terizes a division of charges (corresponding to active and in-
active classes) in the multi-dimensional space of structural
parameters Sij ( n1,=i -no of molecule, m1,=j - no of struc-
tural parameter). Each component of a T-vector is determined
as
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and reflects a degree and direction of influence of the j-th
structural parameter on the magnitude of a property A. The
inverse problem is solved using the following relation:
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It is important to note that each component of the T-vec-
tor is calculated independently from the others and its contri-
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Table 1 The structure-property analysis for monosubstituted benzenes (R-Ph)

No R measu- rank predicted values of k
red k of k

model I model II model III model IV model V
Method (rank) (rank) (rank) (value) (value)
of the analysis T-vector T-vector T-vector MLR PLS

1 -H 0.00 5.5 14.0 10.0 10.0 0.23 0.22
2 -CH3 0.11 11 10.0 8.0 12.0 0.10 0.10
3 -C2H5 0.13 12 9.0 13.0 9.0 0.11 0.11
4 -C3H7 0.04 8 3.0 6.0 7.0 -0.05 -0.04
5 -CH(CH3)2 0.07 9.5 6.0 7.0 8.0 0.04 0.04
6 -C4H9 0.07 9.5 11.0 9.0 11.0 0.12 0.13
7 -N(NH3)3 -0.07 3 7.0 11.0 1.0 0.06 0.00
8 -C6H5 0.45 21 19.0 18.0 19.0 0.35 0.36
9 -CHO 0.32 15 15.0 17.0 18.0 0.30 0.34
10 -CO-CH3 0.48 22.5 21.0 23.0 24.0 0.46 0.52
11 -CO-OCH3 0.48 22.5 23.0 24.0 21.0 0.46 0.48
12 -COOC2H5 0.55 24 27.0 29.0 23.0 0.65 0.70
13 -OCH3 0.44 20 24.0 19.0 22.0 0.53 0.54
14 -OC2H5 0.39 16.5 16.0 21.0 14.0 0.40 0.38
15 -OH 0.40 18.5 20.0 16.0 16.0 0.44 0.40
16 -SCH3 0.40 18.5 18.0 12.0 20.0 0.37 0.41
17 -CF3 -0.09 2 4.0 2.0 2.0 -0.13 -0.15
18 -CN 0.23 13 12.0 15.0 15.0 0.28 0.24
19 -Br 0.00 5.5 5.0 4.0 5.0 -0.03 -0.04
20 -Cl -0.01 4 8.0 5.0 3.0 0.01 0.00
21 -I 0.01 7 2.0 3.0 6.0 -0.08 -0.09
22 -F -0.16 1 1.0 1.0 4.0 -0.15 -0.16
23 -NO2 0.26 14 13.0 14.0 13.0 0.28 0.26
24 -NH2 0.66 26 25.0 25.0 27.0 0.65 0.65
25 -NHCH3 0.73 27 28.0 26.0 26.0 0.74 0.77
26 -NHC2H5 0.79 28 31.0 28.0 30.0 0.87 0.86
27 -CH2CN 0.39 16.5 17.0 20.0 17.0 0.31 0.34
28 -N(CH3)2 0.90 30 29.0 27.0 25.0 0.79 0.82
29 -N(C2H5)2 0.81 29 26.0 30.0 29.0 0.76 0.83
30 -CH2OH 0.59 25 22.0 22.0 28.0 0.55 0.57
31 -CO-N(CH3)2 1.31 33 34.0 35.0 33.0 1.28 1.29
32 -CO-N(C2H5)2 1.31 33 33.0 32.0 31.0 1.31 1.21
33 -SO2-N(CH3)2 1.24 31 32.0 31.0 34.0 1.19 1.15
34 -SO2-N(C2H5)2 1.31 33 30.0 34.0 32.0 1.20 1.42
35 -SO2-N(C3H7)2 1.33 35 35.0 33.0 35.0 1.43 1.22
36 -O-CH(CH3)2 0.51 24 23.0 24.0 17.0 0.54 0.51
37 -O-Ph 0.43 20 22.0 17.0 23.0 0.52 0.50
38 -O-CH2-Ph 0.60 26 29.0 29.0 25.0 0.78 0.76

Correlation between
measured and predicted k values (R2) 0.928 0.923 0.959 0.936 0.974
Cross-validated R2 (Q2) 0.924 0.738 0.751 0.921 0.890
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bution to a model is not adjusted. Thus, the influence of the
number of used structural parameters on the reliability of the
model is not so critical, as in the case of the regression meth-
ods.

A quality of the structure - property relationship was esti-
mated by the Spearman rank correlation coefficient calcu-
lated between ranks of the experimental and calculated ac-
tivities Ai. The estimation of a reliability of a model was
done using K series of the training set compounds (K=30 is
usually enough to reproduce results) with randomly shuffled
activities. The same analysis and Spearman rank correlation
coefficients )�,(rand

cr ii
AAf=ρ  were calculated for all random

series. The calculated model is considered to be statistically
reliable, if

ερρ +>> )�,()�,( iirandii AAAA ,

where ∑
=

=
K

k

rand
crrand K

1

1 ρρ , (12)

where the confidence intervals are calculated at level of sig-
nificance p=α=0.99.[15, 25 ] Each model was also tested by
leave-one-out cross validation and, at the final step, it was
used to predict the test set compounds.

Table 2 The structural parameters of monosubstituted benzenes

No Structural parameter Component of T-vector VIP[a]

Integral
P1 Distribution of lipophilicity potential (70)[b] -6.613 1.745 (-)[c]
P2 Distribution of lipophilicity potential (105) 4.824 1.143 (+)
P3 Distribution of lipophilicity potential (29) -3.521 0.948 (-)
P4 Distribution of lipophilicity potential (332) 3.264 0.954 (+)
P5 Distribution of carbon atoms (99) 5.889 1.586 (+)
P6 Distribution of Nsp3 -carbon atoms (833) 5.641 1.408 (+)
P7 Distribution of hydrogen atoms (757) 4.663 1.216 (+)
P8 Distribution of fluorine atoms (839) -3.177 0.675 (-)
P9 Polarizability of molecule (models III.V) 5.852 1.731 (+)
P10 Lipophilicity of molecule (models II. III.V) -3.627 0.926 (-)
P11 Parameter of structural similarity (Rb) -5.162 1.486 (-)

by electronegativity of atom to structure 32[d] (model II)

Local
P12 Average atom charge in the cell 411 -3.997 1.219 (-)
P13 Average atom charge in the cell 383 2.140 0.808 (+)
P14 Average lipophilicity in the cell 46 -2.760 0.927 (-)
P15 Average polarizability in the cell 384 1.427 0.275 (+)
P16 Average polarizability in the cell 356 0.507 0.086 (-)
P17 Average electronegativity in the cell 46 -0.735 0.167 (-)
P18 Enable of fluorine in the cell 45 -2.874 0.615 (-)

Field
P19 Electrostatic potential in the cell 1425 -2.333 0.429 (-)
P20 Electrostatic potential in the cell 734 -0.683 0.490 (+)
P21 Electrostatic potential in the cell 33 -1.065 0.243 (-)
P22 Lipophilicity potential in the cell 45 -2.087 0.597 (-)
P23 A probability that cell 55 is occupied by nitrogen 1.884 0.572 (+)
P24 A probability of the cell 102 to be empty 2.979 0.828 (+)

[a] VIP is the sum over all model dimensions of the contribu-
tions VIN (variable influence). For a given PLS dimen-

sion, a, 2)( a

kVIN  is equal to the squared PLS weight

(wak)
2 of that term, multiplied by the percent explained

dispersion by that PLS dimension. The accumulated (over

all PLS dimensions) value

∑=
a

a

kk VINVIP
2

)(

[b] This is the number of harmonic for  Fourier transforma-

tion of distributions of atom properties along SC
[c] This is the sign of weight (wak) for last dimension (a=2).
[d] The structure 32 has one from the largest k values
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Results and discussion

The efficiency of the proposed approach was examined for a
data set derived from the formation of charge-transfer com-
plexes between mono-substituted benzenes and 1,3,5-
trinitrobenzene.[26 ] As a target property the formation con-
stants of the charge-transfer complexes (Table 2) were
analyzed. The integral characteristics of molecules, i.e. di-
pole moment, parameters of an inertia ellipsoid, calculated
logP and a molar refraction, quantum-chemical characteris-
tics of some atoms of substituent R, were used in the original
work.[26] The authors applied multi-dimensional regression
analysis, principal component regression (PCR) and partial
least squares (PLS) to study the structure-property relation-
ship. A high correlation coefficient R2=0.95 was calculated

for the training data set of 35 compounds. The calculated
model was used to predict formation constants of 3 com-
pounds from the test set with an average error of about 27 %.
The same training and test sets as in the original study [26]
were used in the current analysis (Table 2).

A cubic lattice with a cell size of 1.8 Å was used. The
molecules were superimposed according to their aromatic
rings. Each molecule was represented with about 20,000 struc-
tural parameters calculated as indicated in the Method sec-
tion. The regression analysis, PLS-method [14] and trend-
vector procedure [15, 16] were applied to detect ”structure-
property” relationships. It is clear that regression analysis
and the trend-vector procedure can not be applied for a set of
20 thousand structural parameters. Therefore, at the begin-
ning of the analysis highly correlated parameters were ex-

Table 3 The PLS-method results calculated for different groups of structural parameters

parameters R2 R2 number of PLS total number
cross-validated latent variables of parameters N

Harmonic 0.953 0.844 2 14470
Integral 0.558 0.487 1 513
Local 0.809 0.638 2 1593
Integral and local 0.934 0.754 3 2106
Selected by T-vector (model IV) 0.973 0.891 2 23

Figure 3 Cubic cells of the monosubstituted benzenes, that influence the complexing ability of molecules. Red (green) color
indicate that the corresponding cell have negative (positive) influence for the formation of the charge-transfer complexes
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cluded (at the level R=0.7) in each of harmonic, integral,
local and field groups. This procedure decreased the total
number of parameters to 125, 35, 79 and 68 in each group
respectively. The analysis was carried out with three sets of
parameters, namely

1) harmonic parameters;
2) local and integral parameters;
3) field and integral parameters.
As a result three approximately equivalent models (I, II,

III) (Table 2, 3) were calculated with the trend-vector method.
The first (I) model (Table 3) contained parameters (P1-P8)
calculated by the Fourier transform of distributions of atom
properties along SC. The structural characteristics of mol-
ecules, related to lipophilicity (P1-P4), and parameters of the
shape of molecules (P5-P8) were found to have the strongest
influence on the complex formation constants of the com-
pounds. The first group of these parameters reflects the abil-
ity of molecules to form intermolecular associations. The
second group of parameters (P5-P7) represents the steric fac-
tors of the complexing process. To some degree the reactiv-
ity of substituted benzene depends on the distribution of the
electronegative fluorine atoms.

The model II reflects the influence of integral and local
structural characteristics (P10-P18) of molecules on their abil-
ity to form the charge-transfer complexes (Figure 3). The
results of calculation (Table 3) show that electronegative sub-
stituents (P17-P18) reduce electron donor properties of the aro-
matic ring, and this prevents the formation of the charge-
transfer complexes. The easily polarized substituents (P15,
P16) increase the reactivity of the molecules. The charge char-
acteristics (P12, P13) and electronegativity (P17) of the sub-
stituents also have a very important influence on the com-
plex formation constant. The integral parameters (P9, P10)
also show that higher polarizability and lower lipophilicity
of the molecule increase their ability to form the charge-trans-
fer complexes. The molecules characterized by polarity (elec-
tronegativity of atoms, see Parameter P11 in Table 3) that was
close to that of one of the active molecules (structure 32,
Table 2) were characterized by high reactivity.

The integral and field structural parameters of monosub-
stituted benzenes (P9, P10, P19-P24) were used in the model
III. As was expected, the parameters of an electrostatic field
of a molecule (P19-P21) were important for the process of for-
mation of charge-transfer complexes. In addition, the con-
sidered intermolecular interaction depended on a lipophilicity
field (P22) that accounted for the contribution of hydrophilic/
hydrophobic interactions.

It is important to mention that the target receptor for the
charge-transfer complex formation is a molecule of
trinitrobenzene. The analysis of probabilities of an occupancy
of lattice cells with various probe atoms (fragments of a re-
ceptor) in space around the monosubstituted benzenes, dem-
onstrated, that the presence of a nitrogen atom in the cell 55
(P23) increased the activity of compounds. The probability
that this region contains nitrogen atoms of (–NO2) group of
the trinitrobenzene is very high. On the contrary, the cell 102
(P24) is probably unavailable during the complexing process
due to presence of a steric barrier.

Satisfactory results were obtained by the multiple linear
regression method (model IV):

kcalc=0.206-0.041 P11-0.410 P10+0.104 P9,
R=0.967; F=151; S=0,12 (13)

This equation was calculated by stepwise regression us-
ing parameters of all three groups after excluding cross-cor-
related terms (R>0.70). The results calculated by this model
were in perfect agreement with those calculated by the T-
vector procedure. The decrease of lipophilicity and increase
of polarizability of a molecule increases its complexing abil-
ity.

The best results in the present work were calculated using
the PLS method, as shown for the model (V). It is important
to mention, that the preliminary selection of structural pa-
rameters essentially influences the quality of the calculated
model. For example, if highly correlated terms were not elimi-
nated from the analysis, the best PLS models were in the
range R2 [0.934, 0.953], while the cross-validated result meas-
ured by Q2 were only [0.754-0.844] (Table 4). The structural
parameters pre-selected by the T-vector procedure calculated
two-dimensional PLS- model with R2=0.974 and Q2=0.890,
indicating its high efficiency for data description and high
generalization ability. The prediction of this given model for
the data from the test set was also quite satisfactory (Table
2).

It should be pointed out here that the calculated results
logically reflect the physico-chemical peculiarities of the
formation of charge-transfer complexes and are in agreement
with the conclusions of the previous study.[26] From the re-
sults shown here, the use of the lattice model for QSAR tasks
in a combination with various statistical methods represents
a new approach to the construction of QSAR models. Further
studies are in progress to confirm this.
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